Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Thomas Q. Hu, ${ }^{\mathrm{a} *}$ Brian O.
Patrick, ${ }^{\text {b }}$ David A. Osmond ${ }^{\text {a }}$ and Brian R. James ${ }^{\text {b }}$

${ }^{\text {a }}$ Pulp and Paper Research Institute of Canada, Vancouver Laboratory, 3800 Wesbrook Mall, Vancouver, BC, Canada V6S 2L9, and
${ }^{\mathbf{b}}$ Chemistry Department, The University of British Columbia, Vancouver, BC, Canada V6T 1 Z1

Correspondence e-mail: thu@paprican.ca

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
Disorder in solvent or counterion
R factor $=0.033$
$w R$ factor $=0.081$
Data-to-parameter ratio $=19.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

4-Ammonio-1-hydroxy-2,2,6,6-tetra-methylpiperidin-1-ium dichloride monohydrate

The crystal structure of the title compound, $\mathrm{C}_{9} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}^{2+} \cdot 2 \mathrm{Cl}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$, has been determined at 173 (1) K. Attached to the piperidinyl ring, which adopts a chair conformation, the hydroxyl and the exocyclic ammonium groups are mutually trans, both occupying equatorial positions. The water molecule and the two chloride anions are involved in strong hydrogen bonding via $\mathrm{O} \cdots \mathrm{H}$ and $\mathrm{H} \cdots \mathrm{Cl}$ interactions.

Comment

The title compound, (I), was first synthesized in an unhydrated form and studied for its protective effect, in Chinese hamster V79 cells, against oxidative damage caused by exposure to $\mathrm{H}_{2} \mathrm{O}_{2}$ or ionizing radiation (Krishna et al., 1998). Recently, (I) has been found to be a fibre-reactive radical scavenger that binds to lignin-rich wood pulps in aqueous media and inhibits the light-induced oxidation and yellowing of the pulps and papers made from such pulps (Hu, 2003). The molecular structure of this compound is shown in Fig. 1, while selected bond lengths, torsion angles and bond angles are listed in Table 1.

(I)

Two different $\mathrm{N}-\mathrm{H}$ bond lengths and $\mathrm{N}-\mathrm{C}$ bond lengths are found in the molecule, viz. $\mathrm{N} 1-\mathrm{H} 10=0.88$ (2) $\AA, \mathrm{N} 2-$ H 12 or -H 13 or $-\mathrm{H} 14=0.98-1.01$ (2) \AA; and $\mathrm{N} 1-\mathrm{C} 1$ or $\mathrm{C} 5=1.531-1.534$ (2) \AA and $\mathrm{N} 2-\mathrm{C} 3=1.495$ (2) \AA. All C-CC bond angles fall in the range $109.0(2)-113.0(2)^{\circ}$, whereas all $\mathrm{N} 1-\mathrm{C}-\mathrm{C}$ bond angles fall in the range 105.8 (1)$112.3(1)^{\circ}$. The piperidinyl ring has a chair conformation, as shown by the torsion angles in Table 1; those involving N1 deviate slightly from those of a perfect chair conformation because of the marginally longer piperidinyl $\mathrm{N}-\mathrm{C}$ bonds than the $\mathrm{C}-\mathrm{C}$ bonds. The hydroxyl and exocyclic ammonium groups are mutually trans, in equatorial positions. The $\mathrm{H}_{2} \mathrm{O}$ molecule is hydrogen bonded via intramolecular interactions; the chloride anions are also hydrogen bonded to H atoms on N2 and N1 (see Table 2).

Received 18 September 2003

Accepted 22 September 2003
Online 30 September 2003

Figure 1
The molecular structure of (I), with the atom-numbering scheme and 50% probability displacement ellipsoids. H atoms are shown as spheres of an arbitrary radius.

Experimental

Compound (I) was synthesized from $490 \mathrm{mg}(2.86 \mathrm{mmol})$ of 4 -amino-2,2,6,6-tetramethylpiperidine-1-oxyl (Aldrich) and 0.74 ml of 11.6 M $\mathrm{HCl}(8.58 \mathrm{mmol})$ in 3.0 ml of ethanol according to a literature procedure used for the synthesis of other piperidin-1-ol hydrochloride derivatives (Sosnovsky \& Cai, 1995). At the end of the reaction (2 h at room temperature), 20 ml of diethyl ether was added and the mixture cooled in a refrigerator (277 K) overnight. The precipitated white solid ($498 \mathrm{mg}, 66 \%$ yield) was isolated by suction filtration, followed by 4 h of vacuum drying. White crystals were produced by dissolving (I) in 3.0 ml ethanol, adding 20 ml of diethyl ether, and cooling the mixture at 277 K overnight.

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}^{2+} \cdot 2 \mathrm{Cl}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=263.21$
Orthorhombic, P Pbca
$a=13.2668(6) \AA$
$b=9.1840(5) \AA$
$c=24.471(1) \AA$
$V=2981.6(5) \AA^{3}$
$Z=8$
$D_{x}=1.173 \mathrm{Mg} \mathrm{m}^{-3}$

> Mo K α radiation
> Cell parameters from 13231
> \quad reflections
> $\theta=2.2-27.9^{\circ}$
> $\mu=0.42 \mathrm{~mm}^{-1}$
> $T=173.2 \mathrm{~K}$
> Platelet, colourless
> $0.50 \times 0.30 \times 0.10 \mathrm{~mm}$

Data collection

Rigaku/ADSC CCD diffractometer

ω and φ scans

Absorption correction: multi-scan
(Blessing, 1995)
$T_{\text {min }}=0.767, T_{\text {max }}=0.959$
27028 measured reflections
3286 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>3 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.081$
$S=1.10$
3286 reflections
173 parameters

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

O1-N1	$1.415(2)$	$\mathrm{C} 1-\mathrm{C} 7$	$1.525(3)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.531(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.513(2)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.534(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.518(2)$
N2-C3	$1.495(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.525(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.526(2)$	$\mathrm{C} 5-\mathrm{C} 8$	$1.520(2)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.522(3)$	$\mathrm{C} 5-\mathrm{C} 9$	$1.522(2)$
O1-N1-C1	$108.2(1)$	$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 2$	$110.2(1)$
O1-N1-C5	$109.6(1)$	$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$	$109.9(1)$
C1-N1-C5	$119.3(1)$		
			$177.8(1)$
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$177.1(1)$	$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-50.8(2)$
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$-176.2(1)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$60.8(2)$
N1-C1-C2-C3	$-53.5(2)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$51.0(2)$
N1-C5-C4-C3	$53.4(2)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$	$-61.1(2)$
N2-C3-C2-C1	$-178.2(1)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 10 \cdots \mathrm{Cl} 2$	$0.88(2)$	$2.24(2)$	$3.117(6)$	$173(2)$
$\mathrm{O} 1-\mathrm{H} 11 \cdots \mathrm{Cl} 2^{\mathrm{i}}$	$0.88(2)$	$2.06(2)$	$2.931(5)$	$168(2)$
$\mathrm{N} 2-\mathrm{H} 12 \cdots \mathrm{Cl} 1$	$0.98(2)$	$2.12(2)$	$3.084(2)$	$165(2)$
$\mathrm{N} 2-\mathrm{H} 13 \cdots \mathrm{Cl} 1^{\text {ii }}$	$0.99(2)$	$2.10(2)$	$3.079(2)$	$167(2)$
$\mathrm{N} 2-\mathrm{H} 14 \cdots \mathrm{O} 2$	$1.01(2)$	$1.78(2)$	$2.783(2)$	$173(2)$
$\mathrm{O} 2-\mathrm{H} 15 \cdots \mathrm{Cl} 1^{\mathrm{iii}}$	$0.90(3)$	$2.24(3)$	$3.135(2)$	$170(2)$
$\mathrm{O} 2-\mathrm{H} 16 \cdots \mathrm{Cl} 2^{\mathrm{iii}}$	$0.78(3)$	$2.33(3)$	$3.111(5)$	$171(3)$
$\mathrm{C} 6-\mathrm{H} 6 A \cdots \mathrm{O} 1$	0.98	2.42	$2.812(3)$	104
$\mathrm{C} 7-\mathrm{H} 7 A \cdots \mathrm{Cl} 2 B$	0.98	2.70	$3.531(5)$	142
$\mathrm{C} 9-\mathrm{H} 9 B \cdots \mathrm{O} 1$	0.98	2.45	$2.863(3)$	105
$\mathrm{C} 9-\mathrm{H} 9 B \cdots \mathrm{O} 1^{\text {iv }}$	0.98	2.49	$3.347(2)$	145

Symmetry codes: (i) $2-x,-y, 1-z$; (ii) $\frac{3}{2}-x, \frac{1}{2}+y, z$; (iii) $2-x, \frac{1}{2}+y, \frac{3}{2}-z$; (iv) $2-x, 1-y, 1-z$.

One chloride ion appears to be disordered, occupying two sites in a 60:40 ratio. All $\mathrm{O}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ H atoms were located in difference maps and refined isotropically, while all other H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances of $0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {iso }}(\mathrm{C})$ and were refined as riding.

Data collection: $d^{*} T R E K$ (Rigaku/MSC, 2001); cell refinement: $d^{*} T R E K$; data reduction: $d^{*} T R E K$; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: teXsan (Molecular Structure Corporation, 1992-1997); molecular graphics: teXsan; software used to prepare material for publication: teXsan.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Hu, T. Q. (2003). J. Pulp Paper Sci. 29, 267-274.
Krishna, M. C., DeGraff, W., Hankovszhy, O. H., Sar, C. P., Kalai, T., Jeko, J., Russo, A., Mitchell, J. B. \& Hideg, K. (1998). J. Med. Chem. 41, 3477-3492.
Molecular Structure Corporation (1992-1997). teXsan. Version 1.8. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Rigaku/MSC (2001). d^{*} TREK. Version 7.1I. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Sosnovsky, G. \& Cai, Z.-W. (1995). J. Org. Chem. 60, 3414-3418.

